Regina Tokarczyk
Na krakowskim Rynku - oprócz Sukiennic, pomnika Mickiewicza i Wieży Ratuszowej - znajduje się maleńki kościółek pod wezwaniem św. Wojciecha.

Rys. 1. Kościół pod wezwaniem św. Wojciecha w Krakowie
Oto wyniki nowoczesnej inwentaryzacji fotogrametrycznej tej XII-wiecznej budowli. Można je przedstawić w sposób tradycyjny (za pomocą rzutów, przekrojów, planów elewacji) albo też jako komputerowy trójwymiarowy model wektorowy (wire frame) lub model pokryty fikcyjnym materiałem z biblioteki oprogramowania.

Rys. 2. Kościół św. Wojciecha w Krakowie. Przekrój pionowy zewnętrza. W ramach pracy magisterskiej w ZFiIT wykonała Joanna Gacka.

Rys. 3. Kościół św. Wojciecha w Krakowie. Model wektorowy 3D. W ramach pracy magisterskiej w ZFiIT wykonała Joanna Gacka.
Najlepiej zaś pokryć go fakturą odfotografowaną na zdjęciu, co przyda obrazowi realistycznego wyglądu. Taki sposób prezentacji zabytku umożliwia wirtualny spacer wokół niego, a jeśli inwentaryzacja jest całościowa - także obejrzenie wnętrza.

Rys. 4. Kościół św. Wojciecha w Krakowie. Zwizualizowany model powierzchniowy (AutoCAD). W ramach pracy magisterskiej w ZFiIT wykonała Joanna Gacka.
W jaki sposób można uzyskać przestrzenne współrzędne punktu w terenowym układzie odniesienia na podstawie zdjęcia fotogrametrycznego? Zgodnie z zasadą rzutowania, wektor promienia rzutującego w przestrzeni obrazowej kamery jest kolinearny (współliniowy) z wektorem w przestrzeni przedmiotowej. Współrzędne pierwszego wektora są wyznaczane przez elementy orientacji wewnętrznej kamery oraz położenie punktu obrazu w układzie tłowym, natomiast pozycję drugiego określa się w zewnętrznym układzie odniesienia (rys. 5). Kolinearność tę można zapisać w postaci prostej zależności:
 Sprowadzając obydwa wektory do tego samego układu, mamy:
 (3) i (4)
gdzie: - A jest ortogonalną macierzą transformacji przez kolejne obroty o kąty orientacji: ω, φ, κ przestrzennego układu tłowego zdjęcia w stosunku do układu odniesienia XYZ, - X0, Y0, Z0 to współrzędne środka rzutów w układzie odniesienia. (Wielkości: X0, Y0, Z0, ω, φ, κ nazywamy elementami orientacji zewnętrznej zdjęcia)

Rys. 5. Kolinearność wektorów w przestrzeni obrazowej i w przestrzeni przedmiotowej
|