wiadomościksięgarniaprenumeratareklamakontaktRODOpolityka prywatności
Najnowsze wydarzenia z dziedziny geodezji, nawigacji satelitarnej, GIS, katastru, teledetekcji, kartografii. Nowości rynkowe, technologiczne, prawne, wydawnicze. Konferencje, targi, administracja.
reklama
strona główna rss
PRENUMERATA TRADYCYJNAPRENUMERATA CYFROWA
KNG Dahlta w Tatrach
blog
DRONY DLA GEODETY

DRONY DLA GEODETY
NAWI

NAWI
NIWELATORY

NIWELATORY
TACHIMETRY

TACHIMETRY
SKANOWANIE LASEROWE

SKANOWANIE LASEROWE
BENTLEY GEOMAGAZYN

BENTLEY GEOMAGAZYN


reklama
reklama

Od Newtona do ...

- część 1 z 3 » »»


Jan Kryński

Z ogólnej teorii względności wynika, że czas nie jest bezwzględny. Płynie on w różny sposób w różnych systemach odniesienia, komplikując tym samym ich definicje.

Niedoskonałość definicji niebieskich systemów odniesienia i ich relacji z systemem ziemskim częściowo eliminowano poprzez stosowanie tzw. poprawek relatywistycznych, traktowanych jako zakłócenia newtonowskiego modelu mechaniki (Kovalevsky, 2002). Coraz wyraźniej rysowała się jednak potrzeba zdefiniowania niebieskich systemów odniesienia w ujęciu mechaniki relatywistycznej w abstrakcyjnej czterowymiarowej czasoprzestrzeni z użyciem układu współrzędnych (x0 = ct, x1, x2, x3), gdzie c jest prędkością światła w próżni, a t – tzw. czasem współrzędnych.


Nieinercjalny system odniesienia

Ponieważ w praktyce definiowalne mogą być jedynie przybliżenia systemów inercjalnych, należało skorzystać z nieinercjalnego systemu odniesienia. W nieinercjalnym systemie odniesienia geometria czasoprzestrzeni określona jest przedstawioną przy użyciu konwencji Einsteina (Trajdos-Wróbel, 1966) uogólnioną formą kwadratową (Landau i Lifszyc, 1980):

 

ds2 = –c2dτ 2ds2 = –c2dτ 2 = gikdxidxk,                   (1)

 

gdzie τ jest tzw. czasem własnym (nazywanym również czasem prawdziwym) danego punktu w przestrzeni, zaś współczynniki gik (i, k = 0, 1, 2, 3) są pewnymi funkcjami współrzędnych przestrzennych x1, x2, x3 i współrzędnej czasowej x0. Układ współrzędnych
(x0 = ct, x1, x2, x3) w nieinercjalnym systemie odniesienia

(gik  różnego od 0 oraz różnego od k) nie jest już układem kartezjańskim, tylko krzywoliniowym. Współczynniki gik formy kwadratowej (1) określają wszystkie własności geometrii w dowolnym krzywoliniowym układzie współrzędnych i ustalają metrykę czasoprzestrzeni. Są one składowymi tensora metrycznego i zachowują tę samą wartość we wszystkich układach współrzędnych. Interwał ds z formalnego punktu widzenia może być traktowany jako odległość dwóch punktów w abstrakcyjnej czterowymiarowej przestrzeni z wprowadzoną przez Minkowskiego geometrią pseudoeuklidesową. W określeniu relacji pomiędzy systemami odniesienia zasadniczą rolę odgrywa rodzaj przestrzeni, w której zdefiniowane są systemy, oraz zachowanie niezmienności interwału ds między zdarzeniami.


ICRS i ICRF

Nowy niebieski system odniesienia przyjęty został przez XXIII Zgromadzenie Generalne IAU w Kyoto w 1997 roku. Od 1 stycznia 1998 roku stał się on obowiązującym systemem IAU (IAU, 1999) jako Międzynarodowy Niebieski System Odniesienia ICRS (International Celestial Reference System). Kinematyczną realizacją ICRS, przeznaczoną do zastosowań praktycznych, jest Międzynarodowy Niebieski Układ Odniesienia ICRF (International Celestial Reference Frame). Jednocześnie Katalog Hipparcos, który powstał na podstawie obserwacji astrometrycznych wykonanych w ramach misji satelity Hipparcos (Perryman i in., 1997), został zatwierdzony jako podstawowa realizacja ICRS w zakresie widma optycznego.

ICRF został zdefiniowany z dokładnością około 30 µas (as – sekunda łuku) poprzez pozycje 212 definiujących radioźródeł określone na podstawie obserwacji VLBI (IAU, 1996). Konwencjonalny (Umowny) Biegun Odniesienia CRP (Conventional Reference Pole) systemu ICRS (kierunek prostopadły do podstawowej płaszczyzny układu) oparty jest na modelu precesji IAU1976 (Lieske i in., 1977) i teorii nutacji IAU1980 (Wahr, 1981). Jest on bardzo zbliżony do średniego bieguna Katalogu FK5 na epokę J2000.0. Punkt początkowy liczenia rektascensji w ICRS, który określa kierunek osi x1 tego systemu, niemal pokrywa się z punktem równonocy wiosennej Katalogu FK5 (Kołaczek, 2004; Kryński, 2004a).


System barycentryczny i geocentryczny

Jednocześnie z definicją systemu ICRS zaistniała potrzeba zdefiniowania w ujęciu ogólnej teorii względności kilku układów współrzędnych (x0 = ct, x1, x2, x3) w czasoprzestrzeni w taki sposób, aby w każdym układzie współrzędnych o początku w barycentrum dowolnego zbioru mas kwadrat interwału ds między zdarzeniami był wyrażony z odpowiednim stopniem przybliżenia poprzez współczynniki gik w (1) (Kryński, 2004a). Ostatecznie przyjęto definicje barycentrycznego systemu odniesienia i geocentrycznego systemu odniesienia, którym odpowiednio nadano nazwy:

  • Barycentryczny Niebieski System Odniesienia BCRS (Barycentric Celestial Reference System) o początku w środku mas Układu Słonecznego z czasem współrzędnych barycentrycznych TCB (Barycentric Coordinate Time),
  • Niebieski Geocentryczny System Odniesienia GCRS (Geocentric Celestial Reference System) o początku w środku mas Ziemi z czasem współrzędnych geocentrycznych TCG (Geocentric Coordinate Time).

Systemy te, które łącznie tworzą system ICRS (Kovalevsky, 2002), sformułowane zostały z uwzględnieniem współczesnego formalizmu ogólnej teorii względności oraz przy użyciu oceny harmonicznej, z zaleceniem, aby:

  • układy te nie podlegały obrotom względem zbioru odległych obiektów pozagalaktycznych,
  • współrzędne czasowe tych układów były wyprowadzone ze skali czasu realizowanej przez działające na Ziemi zegary atomowe,
  • jednostkami fizycznymi w tych układach były jednostki SI.

Dla obu niebieskich systemów odniesienia zdefiniowano współczynniki gik (1) jako funkcje sumy potencjału grawitacyjnego zbioru mas określających odpowiednio barycentrum Układu Słonecznego i środek mas Ziemi oraz generowanego przez ciała zewnętrzne względem tych zbiorów potencjału pływowego zanikającego odpowiednio w barycentrum lub w środku mas Ziemi (IAU, 2001; Kryński, 2004a). Za czas odniesienia dla widomych (pozornych) geocentrycznych efemeryd przyjęto Czas Ziemski TT (Terrestrial Time) – czas własny systemu geocentrycznego oraz określono relację między TCG i TT. Sformułowano również pełną postnewtonowską czterowymiarową transformację pomiędzy systemami BCRS i GCRS, zwaną uogólnioną transformacją Lorentza (Kovalevsky, 2002), narzuconą przez formę odpowiednich tensorów metrycznych. Obejmuje ona w szczególności transformację pomiędzy skalami czasów współrzędnych TCB i TCG. W celu zachowania ciągłości w pozycjach gwiazd przy zmianie systemu FK5 na nowy barycentryczny system odniesienia dodatkowo zalecono, aby ten ostatni był możliwie bliski równikowi i punktowi równonocy wiosennej FK5 odniesionym do epoki J2000.0. A zatem podstawowa płaszczyzna tego układu (płaszczyzna x1x2 odpowiadająca płaszczyźnie równika niebieskiego w katalogowych układach odniesienia), określona przez Konwencjonalny (Umowny) Biegun Odniesienia CRP (Conventional Reference Pole), zwany również biegunem ICRF, znajdować się ma możliwie blisko płaszczyzny średniego równika na epokę J2000.0. Z kolei punkt początkowy układu (odpowiednik punktu równonocy wiosennej w katalogowych układach odniesienia, czyli kierunek osi x1, od którego odmierzana jest rektascensja) – znajdować się winien blisko dynamicznego punktu równonocy wiosennej na epokę J2000.0.

część 1 z 3
1 2 3 » »»



dodaj komentarz

KOMENTARZE Komentarze są wyłącznie opiniami osób je zamieszczających i nie odzwierciedlają stanowiska redakcji Geoforum. Zabrania się zamieszczania linków i adresów stron internetowych, reklam oraz tekstów wulgarnych, oszczerczych, rasistowskich, szerzących nienawiść, zawierających groźby i innych, które mogą być sprzeczne z prawem. W przypadku niezachowania powyższych reguł oraz elementarnych zasad kultury wypowiedzi administrator zastrzega sobie prawo do kasowania całych wpisów. Użytkownik portalu Geoforum.pl ponosi wyłączną odpowiedzialność za zamieszczane przez siebie komentarze, w szczególności jest odpowiedzialny za ewentualne naruszenie praw lub dóbr osób trzecich oraz szkody wynikłe z tego tytułu.

komentarze menu_text_pl
CEP Publikacja w sposób przejrzysty pokazuje zależności pomiędzy systemami odniesienia. Dzięki tej publikacji zrozumiałem jak to jest z CEP i orientacją systemów odniesienia a w konsekwencji układów współrzędnych. Dziękuję. Artur Studziński

BENTLEY GEOMAGAZYN

BENTLEY GEOMAGAZYN


Magazyn użytkowników oprogramowania Bentley Systems

więcej

NAWI

NAWI


Zestawienie precyzyjnych odbiorników GNSS - geodezyjnych, klasy GIS oraz dla stacji referencyjnych. Doroczny przegląd systemów GNSS. Prezentacje wybranych produktów.

więcej

TACHIMETRY

TACHIMETRY


Zestawienie tachimetrów elektronicznych w ofercie polskich dystrybutorów. Prezentacje wybranych produktów.

więcej

SKANOWANIE LASEROWE

SKANOWANIE LASEROWE


Zestawienie naziemnych skanerów 3D dostępnych na polskim rynku (laserowych, mobilnych i optycznych), a także oprogramowania do obróbki chmury punktów. Prezentacja wybranych produktów LiDAR oraz projektów zrealizowanych w tej technologii.

więcej

DRONY DLA GEODETY

DRONY DLA GEODETY


Zestawienie bezzałogowych maszyn latających przeznaczonych do celów fotogrametrycznych i geodezyjnych. Kompletna oferta UAV na polskim rynku - zarówno wirnikowców, jak i płatowców. Przegląd oprogramowania do obróbki zdjęć z dronów.

więcej

NIWELATORY

NIWELATORY


Zestawienie niwelatorów optycznych i kodowych w ofercie polskich dystrybutorów. Prezentacje wybranych produktów.

więcej

6 rekordów


reklama
reklama





© 2005-2019 Geodeta Sp. z o.o.
mapa stronyprenumeratareklamakontakt