wiadomościksięgarniaprenumeratareklamakontaktRODOpolityka prywatnościnewsletter
Najnowsze wydarzenia z dziedziny geodezji, nawigacji satelitarnej, GIS, katastru, teledetekcji, kartografii. Nowości rynkowe, technologiczne, prawne, wydawnicze. Konferencje, targi, administracja.
blog

Osnowy a układy

- «« « część 2 z 4 » »»


Wpa­so­wa­nie w układ em­pi­rycz­ny

Jeśli różnice pomiędzy współrzędnymi obliczonymi (matematycznymi) a empirycznymi (archiwalnymi) na punktach łącznych nie przekraczają poziomu dopuszczalnego błędu współrzędnych, to mamy do czynienia z przypadkiem, kiedy korekta typu (2) nie jest konieczna. W typowych sytuacjach praktycznych takie „zdarzenie dokładnościowe” będzie raczej wyjątkiem. W ogólności zajdzie potrzeba jakiejś konkretnej realizacji formuły korekcyjnej typu (2). Wyróżnimy w związku z tym następujące rodzaje korekt:
  • globalne (dla całej strefy) o charakterze przekształcenia wiernokątnego,
  • globalne o charakterze afinicznym,
  • lokalne (ograniczone do obszaru opracowania, fragmentu strefy) oparte na danym lokalnym zbiorze punktów dostosowania (punktów łącznych), realizowane przy zastosowaniu transformacji Helmerta oraz dodatkowej korekty (korekty posttransformacyjnej) Hausbrandta [14], mającej na celu „wyzerowanie” odchyłek na punktach łącznych i odpowiednie skorygowanie z tego tytułu wszystkich pozostałych punktów transformowanych.
Korekty globalne różnią się zasadniczo od korekt lokalnych tym, że nie wymagają odszukiwania, identyfikowania i kontroli poprawności lokalnego układu punktów łącznych. Funkcje realizujące korekty globalne można wyznaczyć jednokrotnie dla każdej strefy układu „1965” (na podstawie dostępnych w różnych układach współrzędnych punktów I klasy) i „wstawić” je na stałe do programu transformującego w formie odpowiedniej procedury. Rozwiązanie takie zastosowano w pakiecie programów GEONET_unitrans [10], gdzie mamy możliwość wyboru następujących opcji transformacji na wejściu do (lub wyjściu z) układu „1965”:
  • matematycznej,
  • matematycznej skorygowanej (z globalną korektą konforemną),
  • empirycznej (z globalną korektą afiniczną).
Opcja korekt lokalnych, wymagająca dodatkowych informacji zewnętrznych (wykazu współrzędnych punktów łącznych) realizuje się natomiast za pomocą dodatkowego programu transformacji płaskiej.

Globalna korekta konforemna
dla stref układu „1965” jest reprezentowana przez wielomian zmiennej zespolonej (stopnia 1 dla strefy 5 lub stopnia 5 dla wszystkich pozostałych stref układu „1965”). Opiera się ona na założeniu, że przekształcenie pomiędzy układem empirycznym a matematycznym (lub odwrotnie) zachowuje cechę wiernokątności. Lokalnie korekta ta nie zmienia kształtu transformowanej sieci, co ma znaczenie np. przy opracowywaniu sieci GPS. Na podstawie testów przeprowadzonych w poszczególnych strefach układu „1965” można stwierdzić, że globalne korekty konforemne powodują zmniejszenie odchyłek (względem układu empirycznego) przeciętnie o ok. 70% (por. tab. 2). Korekta może być stosowana dwukierunkowo, tzn. także przy przekształceniach odwrotnych (z układu „1965” do układu „1992” lub „2000”).

Globalna korekta afiniczna
, realizowana za pomocą wielomianów stopnia 5-6, sprowadza układ matematyczny do postaci odchylającej się od układu empirycznego przeciętnie już tylko o rząd kilku centymetrów (od 0,02 do 0,05 m). Globalna korekta afiniczna może mieć zastosowanie zwłaszcza przy przekształcaniu wektorowych obrazów map. Korekta może być stosowana dwukierunkowo („do” i „z” układu „1965”). Ograniczeniem stosowalności globalnych korekt afinicznych jest granica danej strefy.

Korektę lokalną
realizuje się dwuetapowo: najpierw za pomocą znanej transformacji Helmerta (liniowej transformacji konforemnej) na podstawie zidentyfikowanych punktów dostosowania klasy wyższej niż klasa punktów transformowanych, a następnie poprzez tzw. korektę Hausbrandta [14], mającą na celu „redystrybucję” powstałych odchyłek na wszystkie punkty transformowane (w szczególności punkty dostosowania zachowują dokładnie współrzędne archiwalne). W odniesieniu do osnów geodezyjnych korekta tego rodzaju proponowana jest m.in. w projektach nowych przepisów technicznych (Instrukcja G-2 [13] oraz Wytyczne Techniczne G-1.10 [6]). Pomimo bardzo klarownego geometrycznie podejścia, korekta lokalna – oprócz wspomnianych już wymagań dodatkowych w zakresie punktów łącznych – ma pewne wady technologiczne. Dotyczy to kwestii niejednoznaczności „na styku” dwóch niezależnie opracowywanych obiektów oraz problemu możliwej nieaktualności danych, na podstawie których wyznacza się lokalne parametry transformacji.
 
n Niejednoznaczność wynika wprost z pewnej dowolności lokalnego układu punktów dostosowania (punktów łącznych transformacji). Jeśli dwa niezależnie opracowywane obiekty (sieci) sąsiadują ze sobą i korzystają z różnych (ale niekoniecznie rozłącznych) zbiorów punktów dostosowania wówczas powstaje problem uzgodnienia współrzędnych punktów położonych na granicy dwóch obszarów („uzgodnienie styków”) – rys. 2. Opisany efekt nie musi być wynikiem jakiegoś błędnego punktu dostosowania. Jest to efekt geometryczny, który można zobrazować na przykład zastąpieniem powierzchni regularnej wycinkami płaszczyzn. W przeciwieństwie do omawianych korekt lokalnych korekty globalne prowadzą do wyników jednoznacznych, pod warunkiem, że są skonstruowane jako funkcje ciągłe dla całej strefy odwzorowawczej. Nie analizujemy już szerzej możliwych efektów „większego kalibru”, kiedy przy niekorzystnym układzie lub niewielkiej liczebności punktów dostosowania „zdarzą się” współrzędne z istotnym błędem. Jeśli weźmiemy pod uwagę bliskie już potrzeby przetwarzania dotychczasowego zasobu numeryczno-kartograficznego z układu „1965” do układu „2000”, to względy ekonomiczne (masowość przetwarzania) i niezawodnościowe (do czego nawiązano powyżej) oraz kwestie inne tu wymieniane uzasadniają przyjęcie automatycznych korekt globalnych, jako „generalnie” zweryfikowanego elementu przetwarzania. Dodajmy, że element ten jako część programu jest dla użytkownika „niewidzialny”.
 
 

geodezja

Rys. 2. Ilustracja do problemu niejednoznaczności korekt lokalnych
 
n Problem nieaktualności danych może zaistnieć w sytuacji, gdy współrzędne archiwalne dotyczą innych położeń znaków fizycznych niż ich stan obecny, tj. na moment wykonywania nowych pomiarów. Łatwo zauważyć, że korekta lokalna spowoduje przemieszczenie układu punktów transformowanych, a tym samym całą „treść” nowego pomiaru względem archiwalnego obrazu mapy. Tej wady nie mają korekty globalne (współczynniki korekt globalnych wyznacza się wprawdzie na podstawie nowo wyrównanych współrzędnych punktów I klasy na elipsoidzie GRS-80, ale to wyrównanie zrealizowano, jak wiadomo, opierając się na tych samych zbiorach obserwacyjnych, z których pozyskiwano współrzędne w układzie „1965”).
 
 
Pewną osobliwą różnicą pomiędzy korektami globalnymi i lokalnymi jest to, że korekty globalne można realizować dwukierunkowo pomiędzy matematycznym układem „1965” a jego odpowiednikiem empirycznym: (x, y)1965 <=> (~x, ~y)1965 , czyli także jako odwrócenie ogólnego przekształcenia (2). Odwrotna korekta lokalna wymaga natomiast, by najpierw przekształcić „błędne” współrzędne do układu nowego, a dopiero na płaszczyźnie tego układu dokonać stosownych dopasowań transformacyjnych na podstawie punktów dostosowania (rys. 3). Oczywiście, takie postępowanie nie jest wadą korekt lokalnych, zmienia tylko w pewnym sensie kolejność operacji elementarnych.
 
geodezja 
Rys. 3. Schemat korekt odwrotnych: a) globalna , b) lokalna
 

część 2 z 4
«« « 1 2 3 4 » »»




dodaj komentarz

KOMENTARZE Komentarze są wyłącznie opiniami osób je zamieszczających i nie odzwierciedlają stanowiska redakcji Geoforum. Zabrania się zamieszczania linków i adresów stron internetowych, reklam oraz tekstów wulgarnych, oszczerczych, rasistowskich, szerzących nienawiść, zawierających groźby i innych, które mogą być sprzeczne z prawem. W przypadku niezachowania powyższych reguł oraz elementarnych zasad kultury wypowiedzi administrator zastrzega sobie prawo do kasowania całych wpisów. Użytkownik portalu Geoforum.pl ponosi wyłączną odpowiedzialność za zamieszczane przez siebie komentarze, w szczególności jest odpowiedzialny za ewentualne naruszenie praw lub dóbr osób trzecich oraz szkody wynikłe z tego tytułu.

komentarze menu_text_pl

Testy skanera SPL w Kopenhadze
czy wiesz, że...
© 2005-2020 Geodeta Sp. z o.o.
created by BRTSOFT

O nas

  • Właścicielem portalu Geoforum.pl jest Geodeta Sp. z o.o., wydawca miesięcznika GEODETA oraz serwisu egeodeta24.pl
  • Geoforum.pl jest portalem internetowym i obszernym kompendium wiedzy na tematy związane z geodezją, kartografią, katastrem, GIS-em, fotogrametrią i teledetekcją, nawigacją satelitarną itp. Od 2005 roku na bieżąco dostarcza informacji z powyższych dziedzin i umożliwia ich komentowanie.
  • GEODETA (Magazyn Geoinformacyjny) ukazuje się od czerwca 1995 roku i jest największym oraz najbardziej popularnym polskim miesięcznikiem prezentującym aktualne zagadnienia z zakresu: geodezji, kartografii, katastru, GIS-u, fotogrametrii i teledetekcji, nawigacji satelitarnej itp.
  • GEODETA cyfrowy to elektroniczna wersja tradycyjnego wydania miesięcznika. W serwisie egeodeta24.pl można zamawiać zarówno prenumeratę, jak i pojedynczne wydania

Zespół redakcyjny

  • Katarzyna Pakuła-Kwiecińska (redaktor naczelny)
  • Anna Wardziak (sekretarz redakcji)
  • Jerzy Przywara
  • Bożena Baranek (szefowa Działu Prenumeraty)
  • Jerzy Królikowski (redaktor prowadzący Geoforum.pl)
  • Damian Czekaj
  • Bogdan Grzechnik

Kontakt

Geodeta Sp. z o.o.
02-541 Warszawa,
ul. Narbutta 40/20
tel. (22) 849-41-63, 646-87-44
redakcja@geoforum.pl
prześlij newsa

Prenumerata
prenumerata@geoforum.pl
b.baranek@geoforum.pl
Reklama
k.kwiecinska@geoforum.pl

facebook twitter linkedIn Instagram RSS