wiadomościksięgarniaprenumeratareklamakontaktRODOpolityka prywatności
Najnowsze wydarzenia z dziedziny geodezji, nawigacji satelitarnej, GIS, katastru, teledetekcji, kartografii. Nowości rynkowe, technologiczne, prawne, wydawnicze. Konferencje, targi, administracja.
reklama
strona główna rss
PRENUMERATA TRADYCYJNAPRENUMERATA CYFROWA
film
Podnoszenie mostu na budowie Świątyni Opatrzności Bożej
blog
NIWELATORY

NIWELATORY
TACHIMETRY

TACHIMETRY
SKANOWANIE LASEROWE

SKANOWANIE LASEROWE
DRONY DLA GEODETY

DRONY DLA GEODETY
NAWI

NAWI
BENTLEY GEOMAGAZYN

BENTLEY GEOMAGAZYN


reklama
reklama

Kartografia matematyczna

- «« « część 4 z 4


Metody tworzenia odwzorowań kartograficznych

Metody tworzenia odwzorowań kartograficznych możemy podzielić na trzy główne grupy:
Konstrukcyjne – odwzorowanie jest realizowane z wykorzystaniem zasad rzutowania powierzchni oryginału na płaszczyznę, pobocznicę walca lub stożka. Wśród nich wyróżnia się trzy podstawowe rzuty: ortograficzny, stereograficzny i środkowy.
Analityczne – polegają na analitycznym rozwiązywaniu stosownych układów równań różniczkowych. Podajemy wówczas ogólne warunki, które ma spełniać odwzorowanie, np. odwzorowanie ma być równokątne i walcowe. Na tej podstawie układamy odpowiednie równanie różniczkowe. Po jego rozwiązaniu w następnym kroku wyznaczamy pewne stałe na podstawie warunków szczegółowych, np. żądania, aby dany równoleżnik odwzorował się izometrycznie.
Numeryczne – często odwzorowania kartograficzne otrzymujemy w wyniku rozwinięcia funkcji odwzorowawczych na szeregi potęgowe lub trygonometryczne, lub stosując odpowiednie wielomiany aproksymacyjne.


Minimalizacja zniekształceń w odwzorowaniach kartograficznych

Przez wiele lat największym wyzwaniem podejmowanym przez kartografów-matematyków było poszukiwanie odwzorowań o jak najmniejszych zniekształceniach. Posługiwano się różnymi kryteriami pozwalającymi na minimalizację zniekształceń odwzorowawczych. Można wspomnieć tutaj takie kryteria, jak: Jordana, Tissota, Airy i Czebyszewa. Wśród nich na uwagę zasługuje szczególnie ostatnie z wymienionych. Czebyszew sformułował twierdzenie, że najmniejsze zniekształcenia odwzorowawcze uzyskamy w odwzorowaniu danego obszaru, przyjmując na jego brzegu stałą skalę zniekształceń długości. Twierdzenie to zostało udowodnione w odniesieniu do odwzorowań konforemnych w kilkadziesiąt lat po śmierci Czebyszewa. Natomiast zagadnienie minimalizacji zniekształceń w odwzorowaniach innego typu, np. wiernopolowych, pozostaje nadal otwarte.
Siatkę kartograficzną oraz izolinie zniekształceń długości w odwzorowaniu Czebyszewa obszaru Polski przedstawia rys. 6.


Rys. 6. Odwzorowanie Czebyszewa obszaru Polski

Z rysunku widać, że maksymalna różnica zniekształceń liniowych w odwzorowaniu wiernokątnym obszaru Polski wynosi około 72 cm/km. Z twierdzenia Czebyszewa oraz przedstawionych wyników obliczeń wynika, że uzyskanie znacznego zmniejszenia zniekształceń odwzorowawczych w jednolitym odwzorowaniu Polski będzie mało prawdopodobne.

Odwzorowanie Gaussa-Krügera oraz Uniwersalne Poprzeczne Mercatora (UTM – Universal Transverse Mercator)

Wiernokątne odwzorowanie elipsoidy, które w późniejszych czasach zyskało nazwę Gaussa-Krügera, zostało opracowane przez matematyka niemieckiego Carla Friedricha Gaussa i użyte przez niego w latach 1820-30 do obliczenia wyników triangulacji Hanoweru. Na podstawie notatek i rękopisów Gaussa geodeta niemiecki Louis Krüger gruntownie dopracował metodę tego odwzorowania i opublikował w roku 1912. Stąd wzięła się nazwa odwzorowanie Gaussa-Krügera.
Jest to odwzorowanie konforemne powierzchni elipsoidy obrotowej spłaszczonej w płaszczyznę spełniające dwa warunki:
1. południk osiowy odwzorowuje się na odcinek linii prostej osi rzędnych x,
2. elementarna skala zniekształceń długości na południku osiowym jest stała i równa jedności, tzn., że południk osiowy odwzorowuje się bez zniekształceń (izometrycznie).
Często w literaturze podawana jest interpretacja geometryczna tego odwzorowania, zgodnie z którą jest to wiernokątne, walcowe, styczne, poprzeczne odwzorowanie elipsoidy obrotowej spłaszczonej w płaszczyznę.
Zaproponowane w latach II wojny światowej w Ameryce odwzorowanie UTM stanowi pewną modyfikację odwzorowania Gaussa-Krügera. UTM jest także odwzorowaniem konforemnym elipsoidy w płaszczyznę z południkiem osiowym odwzorowującym się na odcinek linii prostej ze stałą skalą zniekształceń długości, lecz wartość tej skali jest mniejsza od jedności i równa m0=0,9996. Zależność pomiędzy współrzędnymi w odwzorowaniu Gaussa-Krügera a współrzędnymi w odwzorowaniu UTM zgodnie z powyższym przedstawiają wzory:

  xUTM = m0 × xGK

  yUTM = m0 × yGK.

Odwzorowanie UTM stosowane jest do 6-stopniowych stref południkowych pomiędzy równoleżnikami -80° do +80°.
Odwzorowania Gaussa-Krügera i UTM – ze względu na duże zniekształcenia długości – stosowane są w kilkustopniowych pasach południkowych. Odwzorowania te są obecnie powszechnie stosowane w geodezji i topografii. W Polsce do tworzenia map topograficznych w układzie 1992 i UTM oraz mapy zasadniczej w układzie 2000.


Odwzorowanie quasi-stereograficzne

Metodę tworzenia odwzorowania stereograficznego dla elipsoidy podał w 1924 roku astronom francuski Roussilhe. Adaptując to odwzorowanie do obszaru Polski, profesor dr Lucjan Grabowski z Politechniki Lwowskiej zaproponował stosowne wzory matematyczne. W 1930 roku F. Biernacki i J. Słomczyński (oficerowie ówczesnego Wojskowego Instytutu Geograficznego) zastosowali to odwzorowanie w pracach geodezyjnych i kartograficznych obszaru Polski. Po II wojnie światowej znalazło zastosowanie przede wszystkim do tworzenia map topograficznych i zasadniczych w układzie 1965 (strefy odwzorowawcze 1-4) oraz map topograficznych w układzie GUGiK 80.Odwzorowanie quasi-stereograficzne jest odwzorowaniem konforemnym, azymutalnym powierzchni elipsoidy obrotowej spłaszczonej w płaszczyznę. W ograniczonym obszarze odpowiada ono stereograficznemu odwzorowaniu kuli o promieniu 
    
wyznaczonym w punkcie głównym odwzorowania, tj. punkcie styczności płaszczyzny odwzorowania do elipsoidy.
Prace teoretyczne nad własnościami odwzorowania Roussilhe’a wykazały, że może być ono powiązane z odwzorowaniem Gaussa-Krügera. Otrzymano prostą pojęciowo i sprawną numerycznie metodę bez konieczności rozwijania na szeregi. Metoda ta pozwala ponadto na odwzorowanie dowolnie dużego obszaru z całą elipsoidą włącznie.


Odwzorowanie Mercatora

Twórcą tego odwzorowania był kartograf i matematyk Gerhard Kremer, znany powszechnie jako Mercator. W 1569 roku sporządził mapę świata w odwzorowaniu równokątnym walcowym normalnym kuli w płaszczyznę. Odwzorowanie stosuje się w ograniczonym pasie równoleżnikowym, ponieważ bieguny N i S odwzorowują się w nieskończoności. Ważną własnością odwzorowania Mercatora jest fakt, że loksodroma (linia przecinająca południki pod stałym kątem) odwzorowuje się na prostą przecinającą obrazy południków pod stałym kątem. Ze względu prostotę i łatwość użytkowania odwzorowania Mercatora powszechnie stosowane jest do tworzenia map nawigacyjnych.


Układy współrzędnych prostokątnych płaskich stosowane w Polsce

Odwzorowania kartograficzne stanowią podstawę tworzenia różnych układów współrzędnych prostokątnych płaskich stosowanych w pracach geodezyjnych i kartograficznych. Układy te są wprowadzane w celu ujednolicenia urzędowych opracowań kartograficznych i geodezyjnych pod względem podstaw matematycznych. W Polsce na przestrzeni ostatnich pięćdziesięciu lat stosowano 6 państwowych układów współrzędnych: 1942, 1965, GUGiK80, 1992, 2000, UTM.

  • Układ 1942 został wprowadzony w 1953 r. Był przeznaczony do opracowań wojskowych. Wykonywano w nim prace geodezyjne i kartograficzne oraz wydawano wojskowe mapy topograficzne. Jego użytkowanie zakończono ok. roku 1990, ale do roku 1997 wydawano jeszcze mapy topograficzne. W układzie 1942 zastosowano odwzorowanie Gaussa-Krügera elipsoidy Krasowskiego. Układ stosowany był w dwóch wersjach: strefy 6-stopniowe (do opracowania map topograficznych), strefy 3-stopniowe (do map wielkoskalowych).
  • Układ 1965 wprowadzony w 1968 r. był przeznaczony do opracowań topograficznych i geodezyjnych. W układzie tym występuje podział na pięć stref odwzorowawczych, których zasięg oparty był na ówczesnym podziale administracyjnym kraju. W strefach o numerach 1-4 zastosowano odwzorowanie quasi-stereograficzne, natomiast w strefie piątej – odwzorowanie Gaussa-Krügera. Jako powierzchnię odniesienia przyjęto elipsoidę Krasowskiego.
  • Układ GUGiK 80 wprowadzony był w Polsce na początku lat 80. do opracowania map topograficznych w skalach mniejszych od 1:50 000. Układ ten nie był ujawniony na mapach. Mapy topograficzne posiadały siatkę kartograficzną, natomiast nie umieszczono na nich siatki kilometrowej. W układzie tym wykonano mapę topograficzną w skali 1:100 000 oraz mapę przeglądową w skali 1:500 000. Zastosowano odwzorowanie quasi-stereograficzne jednostrefowe dla całej Polski. Jako powierzchnię odniesienia przyjęto elipsoidę Krasowskiego (niektóre źródła podają elipsoidę Bessela).
  • Układ 1992 stosowano w Polsce od 1995 r. do opracowania cywilnych map topograficznych, choć oficjalnie został zatwierdzony ustawą dopiero w roku 2000. W układzie tym zastosowano odwzorowanie Gaussa-Krügera w jednej 10-stopniowej strefie odwzorowawczej. Przyjęto skalę zniekształceń długości na południku osiowym równą 0,9993, co daje w niektórych miejscach zniekształcenia długości równe -70 cm/km. Na wschodnich krańcach Polski występują maksymalne zniekształcenia równe +90 cm/km. Jako powierzchnię odniesienia zastosowano elipsoidę GRS80.
  • Układ 2000 zatwierdzony tą samą ustawą z roku 2000 co układ 1992 i przeznaczony do prac geodezyjnych. W układzie tym zastosowano odwzorowanie Gaussa-Krügera w pasach 3-stopniowych. Jako powierzchnię odniesienia przyjęto elipsoidę GRS 80.
  • Układ UTM jest układem współrzędnych prostokątnych płaskich wykorzystywanym do opracowań wojskowych. Zastosowano w nim odwzorowanie Gaussa-Krügera w pasach 6-stopniowych. Na południku osiowym przyjęto skalę zniekształceń długości równą 0,9996. Jako powierzchnię odniesienia przyjęto elipsoidę WGS84.

dr hab. Jerzy Balcerzak jest dyrektorem Instytutu Fotogrametrii i Kartografii Wydziału Geodezji i Kartografii Politechniki Warszawskiej
dr Paweł Pędzich jest pracownikiem Zakładu Kartografii Wydziału Geodezji i Kartografii PW

(Opracowanie zamieszczono na GeoForum w październiku 2006 r. Więcej informacji na temat stosowanych w Polsce państwowych układów współrzędnych w zakładce Geodezja/Transformacje oraz GIS/Przegląd odwzorowań Polsce)

część 4 z 4
«« « 1 2 3 4




dodaj komentarz

KOMENTARZE Komentarze są wyłącznie opiniami osób je zamieszczających i nie odzwierciedlają stanowiska redakcji Geoforum. Zabrania się zamieszczania linków i adresów stron internetowych, reklam oraz tekstów wulgarnych, oszczerczych, rasistowskich, szerzących nienawiść, zawierających groźby i innych, które mogą być sprzeczne z prawem. W przypadku niezachowania powyższych reguł oraz elementarnych zasad kultury wypowiedzi administrator zastrzega sobie prawo do kasowania całych wpisów. Użytkownik portalu Geoforum.pl ponosi wyłączną odpowiedzialność za zamieszczane przez siebie komentarze, w szczególności jest odpowiedzialny za ewentualne naruszenie praw lub dóbr osób trzecich oraz szkody wynikłe z tego tytułu.

komentarze menu_text_pl



reklama
reklama





2009 created by BRTSOFT.com
© 2005-2019 Geodeta Sp. z o.o.
mapa stronyprenumeratareklamakontakt